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We propose a numerical procedure for solvin, 0 a class of transient \isuoelastic flows with 
free surfaces. It is based on a Galerkin,!Finite Element technique on deforming elements com- 
bined with a predictor-corrector scheme. l’he method is applied to the analysis of jet breakup 
caused by capillary forces. Non-linear effects known to experimentalists are predicted and a 
detailed comparison with asymptotic results is carried out. I- 1956 hzademiz Preia. inc. 

It is well established that the range of validity of the Newtonian constitutive 
model is limited to low molecular weight fluids. The surprising phenomena 
associated with the flow of polymeric materials cannot be explained on the basis a: 
the Navier-Stokes equations. Non-Newtonian behavior has many facets. Among 
them are the prcsencc of normal stresses in viscometric flow-s, the shear-rate depen- 
dence of the shear viscosity, high resistance to elongational deformation, and 
memory effects associated with the elasticity of the material. A large number of con- 
stitutivc models have been developed (and indeed are still being developed) CO 
describe non-Newtonian behavior (see, e.g., Bird er al. [I ] ), but none is known to 
be applicable in all flow situations. This is in marked contrast to Newtonian fluid 
mechanics, where one does not question the very form of the mathematical problem 
to be solved. 

In this context, the numerical simulation of the flow of highly elastic liquids in 
complex geometries has attracted the attention of many research groups. Two com- 
prehensive reviews on this subject are available (Crochet and Walters [“i E ]. 
Crochet rr irl. [Sl). Most of the work has concentrated on steady flows, and, for 
reasons of tractability, simple constitutivc modcis have been used. Examples of 
these are the Maxwell and Oldroyd-B fluids; they constitute valid formulations for 

arbitrary large deformations of the material, and can, at ieaat qualitatively, account 
for many of the observed elastic effects. Most applications involving polymer liqurds 
occur at low or negligible Reynolds numbers. The numerical solution of viscoelastic 
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flows has proven very difficult, however, in view of the non-linearities present in the 
constitutive models. Although considerable success has been achieved in the last few 
years, obtaining reliable solutions at high elasticity remains a challenge. 

There are strong motivations to develop numerical techniques for solving trans- 
ient viscoelastic flows. One is of course the large number of interesting applications. 
Another stems from the difficulties encountered by steady algorithms in obtaining 
results for high elasticity; a transient approach might reveal the lack of a steady 
solution and generate time-periodic solutions, for example. Also of relevance is the 
application of a transient scheme to the non-linear analysis of the stability of 
viscoelastic flows. 

Few numerical solutions of transient viscoelastic flows in complex geometries 
have been described in the literature, probably because of the enormous amount of 
computer resources involved. Indeed, only four papers dealing with the subject have 
been published as of this writing, and no solution of a flow problem with a free sur- 
face has ever been reported. Hassager and Bisgaard [19] have proposed a 
Lagrangian finite element technique based on a variational formulation of the flow 
of a Maxwell fluid (Hassager [18] j; they have applied their method to the problem 
of a sphere suddenly set in motion in a cylinder containing an initially quiescent 
fluid. Lee et al. [26] have studied the slow compressive flow of a Maxwell fluid 
between two parallel disks. Here, the constitutive model is written in its differential 
form, and Lagrangian coordinates are used to simplify the formulation. Spatial dis- 
cretization is achieved by means of the mixed finite element technique developed by 
Crochet and Keunings [7], and a predictor-corrector scheme is used to determine 
the nodal motion. These two Lagrangian techniques are well suited for flow 
problems involving small deformations of the grid; they become much less feasible, 
however, when large deformations take place, which is the case in various free sur- 
face problems and in a majority of flows in confined geometries. 

Two reports have appeared of the solution of transient viscoelastic flow equations 
in Eulerian form. Finlayson [ 121 has studied the stability of fully developed flows 
in a circular pipe by means of a Petrov/Galerkin method for spatial discretization, 
combined with a first-order time integrator. The constitutive models used in his 
work are direct generalizations of the Maxwell model, allowing for viscosities and 
relaxation times dependent of the rate of deformation. A finite difference method 
has also been proposed recently by Townsend [35] for solving the flow of an 
Oldroyd-B fluid past a circular cylinder. Here, a smoothing procedure is used to 
stabilize the time integration for high elasticity numbers; as a result, this method is 
more a pseudo-transient algorithm for obtaining steady solutions than a true trans- 
ient scheme. 

In this paper, we present an algorithm for solving a class of transient viscoelastic 
flows with free surfaces. It is based on a Galerkin/Finite Element method on defor- 
ming elements combined with a predictor-corrector scheme for the temporal 
integration. Numerical methods using deforming finite element grids have been 
developed in the last few years for solving a broad range of moving boundary 
problems (Lynch [28]). In the context of Newtonian fluid mechanics, for example, 
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Frederiksen and Watts [13] have applied the space-time finite element method of 
Bonnerot and Jamet [3], while Kheshgi and Striven [25] have suggested a 
Galerkin technique combined with a penalty treatment of the incompressibility COD- 

straint. -4 conceptual framework common to these different techniques has been 
established by Lynch [28]; it is adopted in the present paper, and its main features 
can be described as follows: the unknown fields are interpolated by finite element 
basis functions defined on a continuously deforming grid; the displacement of the 
free surface is unknown a priori and is determined simultaneously with the 
unknown fields; at each discrete time step, the grid is deformed to follow :he 
motion of the free boundary in a way that avoids excessive element deformation; 
this grid motion is properly accounted for in the formulation of the discretized 
problem. 

For the sake of illustration, we consider the flow of an Oldroyd-B fluid; exten- 
sion to more complex models such as those used in recent steady simulations 
(Keunings et ai. [22]; Keunings and Crochet 1231) does not present acy 
significant difficulty. In addition, we assume that the free surface can be represented 
by a height function. Here also, other representations for the free boundary can be 
envisaged to handle more complex situations (Hirt and Nichols [20]; Kheshgi and 
Striven [ZS]). The method has been implemented for two-dimensional plane or 
axisymmetric geometries (with or without a free surface); solving three-dimensional 
problems does not involve new principles, but is simply out of the question for 
obvious practical reasons. 

We apply the numerical technique to the simulation of capillary instabilities 
leading to the breakup of liquid jets into droplets. This problem arises in mafly 
applications. including ink-jet printing technology, new techniques for measuring 
eiongational properties of polymeric solutions, and various atomization processes 
(Schummer and Tebel 1341 j. Theoretical investigations of Newtonian jets ir. the 
laminar regime have achieved a considerable success in predicting observed 
phenomena (McCarthy and Moiloy [30]; Bogy [2] jr but such is not the case with 
viscoelastic jets. Experimental work with polymeric solutions has revealed the 
remarkable stabilizing effect of elastic forces on rhe breakup process; indeed. 
viscoelastic jets generally take longer to disintegrate into droplets than Newtonian 
jets of comparable shear viscosity (see, e.g., Gordon er al. [15] ). The theoretical 
studies aimed at explaining this behavior have been based on linear stability 
analyses. In this context, one considers the growth of infinitesimal disturbances 
applied to a fully relaxed jet and leading to breakup; the governing equations are 
linearized, as well as the boundary conditions which are applied at the unperturbed 
jet surface. Since the deformations are assumed to be small. the rheologicai 
behavior of the fluid is unambiguously described by the general linear viscoelastic 
model (Christensen [S]). The results indicate a destabilizing effect of elastic forces. 
which appears to be in disagreement with experimental evidence and suggests that 
the breakup process is dominated by non-linear effects (Middleman [3f]; Goidin PI 
al. [ 161). Two complementary non-linear analyses of viscoelastic jet breakup have 
been carried out recently; one is based on a unidimensional model of [he jet 
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dynamics, while the other consists of the numerical simulation of the full two- 
dimensional flow by means of the method presented in this paper. Preliminary 
results have been reported by Bouslield et al. [4] for the one-dimensional analysis, 
and by the present author (Keunings [24]) for the numerical study. Both 
approaches are able to predict the stabilizing nature of elasticity, and show that it 
results from non-linear behavior associated with the buildup of elongational stresses 
during the growth of the disturbances. 

In the present paper, we focus on a detailed comparison between numerical and 
linearized analytical results. The latter are asymptotically valid for small defor- 
mations of the jet surface, and thus provide a relevant check of the accuracy of the 
numerical procedure. In order to achieve a meaningful comparison, we study the 
growth of a small cosinusoidal perturbation initially applied to the radius of a 
cylindrical jet, and we select as initial conditions for the flow held the linearized 
analytical solution corresponding to the applied perturbation. The analytical 
solution is based on the linear theory proposed by Middleman [31] for the 
Oldroyd-B model. It is found that the numerical results for both Newtonian and 
Oldroyd-B fluids are in excellent agreement with the analytical predictions at the 
beginning of the growth. At later times, the numerical analysis predicts a non- 
cosinusoidal deformation of the jet surface due to non-linear effects. This leads in 
the Newtonian case to the birth of satellite drops; in the viscoelastic case, a pattern 
of drops connected by slowly stretched filaments is achieved. Both phenomena have 
been observed experimentally (Bogy [2]; Gordon et al. [lS]); they cannot be 
predicted by the linear theory, which is shown here to be increasingly inaccurate 
when finite deformations of the jet surface take place. 

GOVERNING EQUATIONS 

The isothermal flow of a viscoelastic fluid is governed by a set of conservation 
and constitutive equations. The former express the principles of conservation of 
mass and momentum, while the latter describe the rheological behavior of the 
specific class of materials under consideration. These equations are typically written 
in terms of three unknown fields: the velocity field v, the pressure field p, and the 
extra-stress field T. The latter is related to the Cauchy stress tensor u through 

u= -pl +T, (1) 

where I is the unit tensor. In general, the unknown fields depend on time t and the 
set of independent space variables x. Compressibility effects can be neglected in 
most applications so that the mass conservation equation reduces to the kinematic 
constraint 

v.v=o. (2) 
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The momentum equation takes the familiar form 

pg= -Vp+V.T+f, 

where p denotes the density, D/Dt is the material derivative. i.e., 
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and f is the body force per unit volume. Closure is obtained with a constitutive 
model relating the extra-stress field to the deformation experienced by the material. 
In this paper, we consider the flow of an Oldroyd-B fluid (Qldroyd [3?]) whose 
rheological behavior is defined by 

T+A,T=2p[D+&;]. i5) 

Here: the symbol ? stands for the upper-convected derivative of T defined as 

while D is the rate of strain tensor, ~(VV + Vv’). The Oldroyd-B model contains 
three material constants (a shear viscosity ,u, a relaxation time i, and a retardation 
time A,) which are determined from appropriate rheometrical experiments (Walters 
[36]). Despite its relative simplicity, the Oldroyd-B model is known to be ade- 
quate to describe the rheology of some polymer solutions (see: e.g.. Jackson er al. 
C211). 

Inspection of equations (5-6) reveals the implicit character of the stress-strain 
relationship. This prevents the direct elimination of T in the momentum 
equation (3) and requires the use of a mixed numerical technique in which extra- 
stresses, together with velocities and pressure, are basic unknowns. Another dif- 
ficulty comes from the presence in (5) of the term 6. It contains second-order 
spatial derivatives of the velocity field, the presence of which is computationally 
inconvenient. We can, however, rewrite (5) in the following manner: 

T=T, +T,, ( 7’ 1 i 

Equivalence of the two formulations is obtained if 
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(Crochet and Keunings [9]). We shall refer to T, and T2 as the elastic and New- 
tonian components of the extra-stress tensor, respectively. 

Upon elimination of T2 in the momentum equation (3), we obtain the set of non- 
linear partial differential equations 

T, + E.,+, = 2p, D, (11) 

Dv 
Pz= -Vp+2p2V.D+V.T,+f. (12) 

v.v=o, (13) 

to be solved in terms of T,, v and p in a flow domain 0. In the presence of a free 
surface, the flow domain is an unknown function of time Q(t). We will assume that 
D is two-dimensional (either planar or axisymmetric), and that the free surface, if 
any, can be represented by a function of time and a single space coordinate (see 
Fig. I). In that case, the evolution of the deforming flow domain can be determined 
through the kinematic condition 

where u, and o-, are the velocity components at the free surface. The unknown 
function h will be referred to as the height function. 

Initial and boundary conditions relevant to a specific problem must also be sup- 
plied. We prescribe initial values for the velocity and the elastic part of the stress. 
Boundary conditions may include the specification of the velocity components or 
the contact force on part of the boundary dO; values of the elastic stress are 
imposed at an entry section, and a reference pressure must be defined at one point 
of the flow domain if no surface force condition is imposed. At a free surface (that 
is, a liquid-gas interface) continuity of stress leads to the condition 

o.n=-p,n+y R, Rz 
( ) 

‘+’ n, 

vt GAS 

(15) 

Fig. 1. A typical flow domain with a free surface represented by the height function k. 
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where n is the unit normal to the free surface, pg is the ambient gas pressure. : i.s 
the coefficient of surface tension and R,, R2 are the principal radii of curvature of 
the interface (Levich [27]). The latter are directly related to the height function 
and its derivatives. For example, assuming that the flow domain depicted in Fig. L 
is axisymmetric around the x-axis, one has 

For plane flows, the expression for R, remains valid, while R, becomes infinite, 
Finally, we complete the mathematical formulation with initial and boundary con- 
ditions for the height function. 

NUMERICAL TECHNIQUE 

The numerical technique is based on a Galerkin,‘Finite Element discretization of 
the governing equations combined with a finite difference scheme for the integration 
in time. Simply stated, the algorithm goes as follows: the simulation starts marching 
forward in time from given initial data and an initial finite element mesh. At eat 
time step, the flow field and the location of the free surface are determined by 
means of a predictor-corrector scheme. The grid deforms during the simulation to 
follow the displacement of the free surface. and internal nodes are moved such as to 
preserve the initial topology of the element layout. This nodal motion is anchored 
to the displacement of the free surface and is appropriately accounted for in the 
Galerkin formulation. 

More precisely, let us define approximations of the finite element type for the 
elastic part of the extra-stress, the velocity, and the pressure as follows: 

TT(x, r) = c T’,it)di, Y*(x, tj =I vqt)$i, p*ix, r)=Cp”it)7+ (18) 
I i k 

In these expressions, the symbols di, II/,, and 17~ represent given finite element basis 
functions, while T’,, Y! and p’ are unknown time-dependent nodal values. The basis 
functions depend only on position when a fixed grid is used. If nodal motion is 
allowed, they become implicit functions of time through the location of the nodes; 
one has, for example, that 

where the X,, are nodal position vectors. 
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We invoke the Galerkin principle to discretize (1 l-13 j in space. This requires 
that residuals obtained after substitution of (18) in (11-13) be orthogonal to the set 
of basis functions, giving 

(20) 

= s *jia * . n d&2, 
as?(r) 

s 
nk[V.v*] dQ=O. (22) 

-Q(r) 

Here, every term marked by an asterisk denotes the corresponding finite element 
approximation obtained from (18). For the sake of brevity, we have written the 
Galerkin principle in a closed form valid for Cartesian tensors in an orthogonal 
coordinate system. When dealing with an axisymmetric flow domain, we use the 
proper formulation derived in a cylindrical coordinate system. (See Crochet et al. 
[6] for details in the particular case of steady flows.) 

In the next section, we present results obtained for both an Oldroyd-B fluid and 
a Newtonian fluid. The mixed technique defined by (2G-22) is of course applicable 
in the Newtonian case where A, = 0. Previous work on steady flows has clearly 
shown, however, that a mixed method is not an optimal choice in this particular 
case, whether based on a criterion of accuracy or economy of computer resources 
(see, e.g., Crochet and Keunings [8]; Crochet et al. [6] ). For solving the flow of a 
Newtonian fluid, we use here the classical velocity-pressure Galerkin formulation of 
the Navier-Stokes equations which can be formally obtained from (2&22) with the 
selection of parameters 

&=p,=O, p’z=/.l. (23) 

Equation (20) then directly gives TT= 0 and can therefore be ignored. The 
algorithm to be presented hereafter thus remains valid for a Newtonian fluid, keep- 
ing in mind that only velocity and pressure nodal values enter the Galerkin for- 
mulation in this particular case. 

We have used the divergence theorem in the momentum equation (21) to reduce 
regularity requirements on the basis functions tjj and to introduce natural boun- 
dary conditions in terms of the contact force at the boundary. In particular, the 
stress condition (15) at the free surface is specified by direct substitution in the 
right-hand side of (21). It is crucial to note from inspection of (16) that the discrete 
representation of the free surface must be of class C’ to preserve conformity. Such a 
degree of regularity, however, can be avoided by an integration by parts along the 
free surface. The technique has been proposed by Ruschak [33] for plane flows. In 
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that case, the free boundary is defined as a curve in a plane. If s denotes the arc 
length along this curve, and t the unit tangent vector, we have 

and some terms in the boundary integral can be integrated by parts to yield 

IIere, the symbols 0 and 1 refer to the endpoints of the free surface (see Fig. I). This 
enables the use of a representation of class Co for the free surface, together with a 
natural specification of the endpoint tangent vectors. It is possible to extend the 
procedure to axisymmetric flows. Here a cylindrical coordinate system is used and 
the free surface is described by a meridian. The boundary term now reads 

Since the curvature of the interface can be written as 

we can integrate by parts the term involving a second-order deriv-ative of the 
boundary representation. We obtain 

+27ry[$pls, - 2nl’[$jrt],,+ (28i 

and a representation of class C” for the interface is again admissible. 
Special care must be taken in the evaluation of time derivatives when the 

Galerkin procedure is used on a moving grid. To illustrate this, let us focus on the 
term c’TT/i?t present in (20). Because of (19 ), this term takes the form 

The time derivative of the basis functions is related to the rate of deformation of the 
grid in a simple way (Lynch and Gray [29]). Indeed, consider the isoparametric 
transformation used to perform the integration over a deforming element: 
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Here, the X, are global nodal coordinates and 0, denote basis functions defined on 
the parent element in the 5 space. Since the value of a basis function 4, at a given 
point in the 5 space does not depend on time, one has 

(31) 

The term (C,(dx,/dt)Q,n) has the meaning of an elemental velocity field and will 
be denoted by ve. Going back to (29), we may write 

In consequence, the material derivative present in (20j becomes 

and a similar development for the time derivative of the velocity field yields 

(32) 

(33) 

(34) 

We recognize as special cases the conventional Galerkin method on a fixed mesh 
(v’=O) and the purely Lagrangian approach where nodes are fluid particles 
(v’ = v*). The latter method offers the combined advantages of a natural tracking of 
the free surface and a slight simplification of formulation. It often results in over- 
distorted grids as the simulation proceeds, however, and thus requires somewhat 
intricate remeshing procedures. We adopt here another approach which we find 
particularly attractive when the free surface can be represented by a height function. 
It consists in relating the motion of internal nodes to the displacement of the free 
surface. In this case, the elemental velocity field generally differs from the fluid 
velocity and must be accounted for as shown in (33-34). 

We determine the motion of the free surface by solving the kinematic condition 
(14) in its weak Galerkin form. We define a one-dimensional finite element 
approximation for the height function in terms of nodal coefhcients h’ and basis 
functions PI: 

/2*(x, I) =c h’(t) fi[ 
I 

Here, the one-dimensional grid used for calculating h is obtained by projecting each 
free surface node on the x - axis. The discretized kinematic condition reads 

(36) 
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where ?cr and x2 correspond to the endpoints of the domain of the height function 
(see Fig. I), and v,*, t$ are the approximated velocity components evaluated at the 
free surface. The internal node motion remains to be defined. In the application to 
be discussed hereafter, we use the following simple law of motion for a node n;: 

.u,( t) = constant, y,,,(t) = C,fh*(.)c,,,, I), !37j 

where c,, is a constant. This readily defines the relation between the elemental 
velocity field and the deformation of the flow domain. 

We have not yet discussed the choice of interpolating subspaces. Previous work 
on the simulation of steady viscoelastic flows has favored the use of a C” represen- 
tation on triangular or quadrilateral elements. with complete second-order 
polynomials for the elastic stress and the velocity and first-order polynomials for 
the pressure (see, e.g., Crochet and Keunings [ 10 J ). This leads to a very large num- 
ber of degrees of freedom in all but the simplest situations. Clearly, in view of the 
enormous amount of computer time involved. the solution of complex transient 
flows calls for a less sophisticated approximation. In the present paper, we use 
isoparametric nine-node quadrilateral elements to discretize the flow domain. The 
height function is consistently interpolated by quadratic polynomials. The elastic 
stress and the pressure are given by bi-linear polynomials on the parent clement, 
while the velocity is approximated by bi-quadratic polynomials. Every 
approximated field is thus of class Co and meets the regularity requirements implied 
by the Galerkin formulation. 

Equations (20-22) and (36) lead to a set of first-order differential equations of 
the form 

F(T) v, fi, T> V, P, H) = 0, (38j 

SO%, H, V) = 0, (39) 

where T, V, P and H are vectors of nodal values of T 1, v, p and h, respectively, and 
the superscript . denotes the derivative with respect to time. The free surface 
variables H and fi appear in (38) through the boundary condition at the interface, 
the definition of the flow domain and its rate of deformation, as explained above. 
We solve (38-39) in a decoupled fashion. From the knowledge of the free surface 
and the ffow field at a discrete value of time t,, we predict the free surface and the 
stress and velocity fields at time t,+ r. We then solve (38) in the predicted flow 
domain in terms of T, V and P. Finally, we correct the free surface by solving (39) 
with the new velocity field. We use a first-order implicit scheme (Euler backward) 
for the integration in time of (38 j and (39), mainly because of its well known A- 
stability property. More precisely, let T”, V”, P” and H” be the nodal vectors at 
time t,,. We obtain corresponding vectors at time I,, + , = t,, + dr, after completion of 
the following steps: 
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(a) Prediction of the free surface and the stress and velocity fields by means 
of a first-order extrapolation. The free surface, for example, is predicted by 

H;;d’ = H” + At,,ti”. 

The time derivatives fin, Tn and v” are known from the previous time step. 

(bj Relocation of the internal nodes by means of (40) and the law of motion 
(37). 

(c) Correction of the flow field by solving (38) on the predicted finite element 
grid. Applying the implicit E.uler scheme to discretize (38) in time, we obtain a set 
of algebraic equations in terms of T” ‘I, V”-’ ’ and P’+ I: 

FJT” + ‘, V” + I, P” + ‘; Hz;;, fig&’ ) = 0, (41) 

where the term fi;;/ is approximated by (Hz;: - HIdred)/At,,. To obtain (41) from 
(38), time derivatives such as T have been replaced by their first order 
approximation, i.e., (T” + I - T”)/At,,. In addition, volume and surface integrals 
present in (41) are evaluated on the predicted flow domain. 

We solve (41) by the Newton-Raphson iterative technique with predicted values 
of T and V as first estimates (the pressure coefficients do not require initial 
estimates since they appear linearly in (41)). The derivation of the New- 
ton-Raphson equations follows a tedious but straightforward procedure which will 
not be described here for the sake of brevity. Details are given by Crochet et al. 161 
for the particular case of steady flows. 

(d) Correction of the free surface by solving (39) with the velocity field V”+’ 
found in step (c). In this case, the time discretization of (39) leads to a linear 
algebraic set of the form 

S&H” + ‘; V”+ ‘) = 0. (42) 

(e) Evaluation of the time derivatives to be used in (a) at the next time step. 
This is conveniently done by simple inversion of the Euler rule. For example, we 
have 

T n+‘= (T”+‘-T”j/At,. (43 j 

The first time step requires a special treatment. We skip the prediction procedure 
and determine the flow field by solving (38 j in the initial flow domain: 

FJT’, V’, P’; HO, fiO) = 0, iw 
where the term fro is given by direct solution of (39). Initial values of T and V are 
used as first estimates in the Newton procedure. Steps (d) and (e) remain 
applicable. 
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The calculation of the flow field in (c) is by far the most costly operation in terms 
of computer time, for it involves the evaluation of an intricate Jacobian matrix and 
the solution of a large linear system. Fortunately, the use of predicted values as first 
estimates in the iterative process is so efficient that, in the simulations discussed 
hereafter, only one iteration has proven necessary to achieve full convergence. This 
strategy is much in the spirit of Gresho’s technique for solving the Navier-Stokes 
equations in confmed geometries (Gresho et al. [17] ). We mention finally that 
automatic selection of the time increment can be made during the simulation, on 
the basis of the difference between predicted and corrected values and a user- 
specified level of local discretization errors. This capability has been exploited by 
Gresho et ai. [ 171 and is readily available here as well. It is not used in the 
application reported below, however, where a constant time increment is chosen 
throughout the simulation. 

NUhKERICAL RESULTS 

We have used the numerical procedure outlined above to simulate the growth of 
disturbances applied to a liquid jet issuing from a nozzle and leading eventually to 
breakup. The framework common to classical stability analyses is retained here: the 
actual spatial stability problem is formulated as a transient process in a frame of 
reference moving with the jet. In addition, the effects of the ambient medium are 
neglected and stresses generated prior to extrusion are assumed to be fuliy relaxed 
(see, e.g., Middleman [3 11). We point out, however, that our analysis is not limited 
to small perturbations of the jet radius. In this context, we study the growth of a 
periodic disturbance applied to the radius of an infinitely long cylindrical jet Ii is 
further assumed that the jet is axisymmetric at all times and that the wavelength of 
the disturbance remains constant during the growth. These hypotheses are well sup- 
ported by experimental studies with externally controlled disturbances (see, e.g.. 
Gordon el al. [ 15 ] ). 

In the present application the integration domain Q extends axially over half the 
wave length of the disturbance and the jet radius plays the role of the height 
function (Fig. 2). If 6 denotes the dimensionless perturbation and h, the radius of 
the unperturbed liquid column, we have 

h(r, tl = A,[1 + ii(z, t)]. (45) 

The primary goal of the present study is, given rheological parameters and initial 
conditions, to determine the function a(~, I). In order to allow for a quantitative 
comparison between numerical results and linear stability analyses (referred to as 
LSA hereafter), we impose an initial perturbation of the form 
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Fig. 2. Integration domain for the jet breakup problem; the flow is axisymmetric around the z-axis, 
and cylindrical coordinates are used. 

where E is a small parameter set here to 0.05. Similarly, we use the LSA results to 
specify the initial flow field (see the Appendix). The boundary conditions are: 

(i) the stress condition (15) at the free surface, 
(ii) symmetry conditions at z = 0 (swell) and L (neck): 

au,. ill? 
v:=~=~=O, 

(iii) symmetry conditions at r = 0: 

(47) 

For the sake of illustration, we have chosen a value of 20 for the dimensionless 
wavelength 2L/h,. Breakup will occur at the first occurrence of a vanishing value 
for the height function. In the finite element simulations, the numerical value for the 
breakup time is known within a fraction of the time increment, since the 
calculations are stopped when the predicted free surface meets the axis of the jet. 

Three dimensionless groups arise in the present problem, namely a Reynolas 
number Re, a Deborah number De, and the ratio r of characteristic times: 

The Deborah number is a measure of the viscoelastic character of the flow; it 
vanishes for a Newtonian fluid. The ratio r is relevant only in the viscoelastic case. 
Lengths, times, velocities and stresses are made dimensionless by means of their 
respective characteristic values ho, 6,uho/jyy 7/6~( and y/h,. 

The present application provides a severe test for the numerical scheme. Indeed, 
the flow is driven only by capillary forces, which themselves are determined through 
the calculated free surface. As a first consequence, the stress condition (15) must be 
imposed accurately, which implies a rather refined discretization of the free surface 
and the neighboring flow field. Furthermore, we anticipate here the need for 
relatively small time increments to preserve the stability of the temporal integration. 

It is not feasible to detail in this paper the wealth of information provided by the 
numerical technique. When presenting the results, we shall focus on the numerical 
output of primary relevance, namely the calculated free surface. 
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We first discuss the case of a Newtonian jet. Results of the simulation are depi.c- 
ted in Fig. 3 where we show the calculated flow domain and the finite element mesh 
at selected values of time. The Reynolds number is set here to 1.8, a value typical of 
experimental studies carried out by Goedde and Yuen [114] with aqueous glycerol 
solutions. The finite element mesh deforms according to (371; it involves 1458 nodal 
values for the velocity field, 205 for the pressure field and 81 for the height function, 
for a total of 1744 degrees of freedom. The time increment is 0.0025 and one time 
step is completed in 5.5 CPU seconds on an IBM 3081,iK computer. Restiits 
indicate that the free surface keeps a cosinusoidal shape at the beginning of the 
process, in agreement with the LSA. This drastically changes from time i = 8 on, 
however, and breakup is predicted to occur away from the neck. We note the 
remarkable smoothness of the calculated free surface even when large variations of 
curvature occur just before breakup. Figure 3 agrees well with photographs presen- 
ted by Goedde and Yuen [ 141. It is indeed observed experimentally that the jet dis- 
integrates into drops with ligaments between them; these ligaments form satellite 
drops if no post-merging with a main drop occurs. A detailed comparison with the 
LSA reveals the non-linear character of the jet dynamics. We give in Fig. 4 the 
amplitude of the perturbation as a function of time at both swell and neck, com- 
pared with the prediction of the LSA. Since the plot is semi-logarithmic, the larter is 
simply a straight line whose slope is the exponential growth rate a. Breakup times 
are predicted to be 9.7 from the LSA and 11.2 from the numerical results. Since the 
LSA is asymptotically valid, we expect a close agreement between numerical and 
analytical results at short times. This is indeed the case during the initial portion cf 
the transient. The numerical results show. however. that non-linear behai;ior 
dominates the growth of the perturbation at later times This is even more evident 
in Fig. 5 where we present the history of the jet radius at the axial position where 
breakup occurs The jet radius first grows in agreement with the LSA until i: 
reaches a maximum value at about t = 8. From that time on, it experiences a sad- 

(-\__,,.lX __- 

Fig. 3. Calcuhted flow domain and finite element grid at selected values al time; Newtonian fluid. 
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Fig. 4. Magnitude of the perturbation d= 16//s as a function of time; Newtonian fluid: numerical 
results at swell (2 = 0) and neck (z = L) and LSA prediction (see Appendix I; the symbol 0 corresponds to 
breakup time. 

den decrease leading to breakup. The presence of an inflection point at the very end 
of the curve has been confirmed by repeating the end of the simulation with a time 
increment equal to 0.001; however, this change of curvature might result from 
spatial discretization errors due to the extreme compression of the grid in the 
neighborhood of the breakup point. 

Data brought together in Table I provide a more quantitative comparison 
between LSA and numerical results; in addition, significant indicators of the 
accuracy of the simulation are listed. We first give as a function of time the 
maximum difference dLS,t,NUhI between jet radii obtained from both analyses, 
relative to the initial radius h,. Results agree very well at short times (for example, 
they differ only by 3% at time t = 4), but start deviating seriously after time t = 7 

“. 5 NUM 

0. 0 / A-L I I 

Fig. 5. History of the jet radius at the axial position where breakup is predicted numerically; New- 
tonian fluid; numerical and LSA predictions. 
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TABLE I 

Characteristic Quantities for the Newtonian Jet 

! 0.5 1 2 4 7 9 Il.125 il.? 

3 LSh.NUhl 8.10-4 ?.10m3 5,10m3 3.10m' 2.10-' 7.10ml 
N"M 

C”“l 2.10-’ ‘L10-7 l.lOmh 5.10m6 1.10-j l.lO-” 3.10-” 3.10mi 
LSi 

“,“i S.lO-” 1.10-’ 3.tom' 1.10-’ 1.10-’ 3.10-; 

e/c 3.10~.8 4.1O-s 6.1O-8 1.10-’ 3.10-’ l.lOmb 8.10-” l.lO-” 

because of non-linear effects. The incompressibility constraint ought to be satisfied 
accurately in the present application. Jt directly implies that the volume of fluid 
enclosed in the calculated flow domain should keep its initial value. We can thus 
obtain a measure of incompressibility errors generated during the simulation by 
means of the relative difference eve, NUM between calculated and initial volumes This 
quantity is given in Table I, as well as the corresponding difference rb$* for the IS.4 
results. One observes that the numerical scheme preserves mass remarkably weli: 
indeed, the error is only 0.03% at the very last time step. The JSA, on the other 
hand, satisfies -the incompressibility constraint only at first order in E; as a result, it 
already suffers from a 100/b error at time t = ‘7. It is worth noting that the LSA 
starts generating such inaccuracies precisely at the onset of non-linear effects predic- 
ted by the numerical technique. 

Finally, the accuracy of the temporal integration can be assessed from the 
maximum difference eh between predicted and corrected jet radii at each time step. 
This quantity is given in Table I relative to the predicted swell radius We can safely 
conclude from inspection of these values that local time discretization errors are 
kept at a very low level throughout the integration. 

Results for an Oldroyd-B fluid are presented in Fig. 6 for a Deborah number 
equal to 5 and a vanishing Reynolds number; we have seiected a value of 0.25 for 
the ratio T. The finite element grid contains 656 nodal variables for the elastic str.ess, 
I134 for the velocity, 164 for the pressure and 81 for the jet radius, for a total of 
2035 degrees of freedom. The time increment is 0.001 and one time step is com- 
pieted in 9 CJVJ seconds. 

Fkg. 6. Calculated flow domain and finite element grid at selected values of time; (Pldroyd-B fluid! 
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Fig. 7. Magnitude of the perturbation as a function of time; Oldroyd-B fluid; numerical results at 
swell and neck, and LSA predictions. 

Our analysis predicts a cosinusoidal deformation of the free surface at short 
times, in close agreement with the LSA. From time t = 1 on, however, dramatic 
non-linear effects come into play: the growth rate of the perturbation suddenly 
decreases and the jet reaches a configuration of drops connected by filaments; these 
filaments keep on thinning, but at a much reduced speed. This is precisely what is 
observed experimentally with polymer solutions (see, e.g., Gordon et al. [ 151). The 
simulation has been stopped at time t = 4 since the values of the radial velocity are 
then so small that they can hardly be discriminated from numerical noise. 

Comparison with the LSA clearly demonstrates that the stabilizing character of 
elastic forces is the result of non-linear behavior. We show in Fig. 7 the growth of 
the perturbation at both swell and neck as obtained by the numerical scheme; the 
prediction of the LSA is again a straight line which ends in this case at time 

NUM 

Fig. 8. History of the jet radius at the midpoint between neck and swell; Oldroyd-B fluid; numerical 
and LSA predictions. 
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-0.02 0 0.2 1 2 2.4 

Fig. 9. Contour lines ar time I = 1 for the velocity components u, and L;. and the elastic stress com- 

ponents T;’ and rjr: Oldroyd-B fluid. 

t = 0.98. Agreement between numerical and LSA results is remarkably good at short 
times, but a strong saturation effect is predicted numerically from time t = I on. The 
transition between the linear region, where the LSA is valid, and the slow stretching 
of the connecting filaments is very sharp. This is confirmed in Fig. 8, where we 
present the history of the jet radius at the midpoint between neck and swell; the 
LSA predicts a constant value for the radius there. A snapshot of the flow field in 
the non-linear regime is given in Fig. 9. The flow is practically elongational in the 
filament, which explains the large values for the elastic stress component 2-i’ there. 
The buildup of these elongational stresses during the growth of the disturbance is 
responsible for the stabilizing nature of elasticity. 

Finally, we give in Table II the characteristic quantities defined previously during 
the discussion of Newtonian results. We can draw similar conclusions: (i) the 

Characteristic Quantities for the Viscoelastic Jet 
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agreement between numerical and LSA results is excellent at short times but 
deteriorates later on when non-linear behavior dominates; (ii) the incom- 
pressibility errors generated by the numerical scheme remain at a very low level 
throughout the simulation while the LSA presents inadmissible inaccuracies in that 
regard; (iii) the local discretization errors during the temporal integration are very 
small. It is interesting to note that the evolution of the quantity e,Z reflects the dif- 
ferent phases of the transient process. 

APPENDIX 

We summarize here the linear stability results used as initial conditions for the 
numerical simulations. Following the procedure described by Middleman [31], we 
have solved the dynamic problem obtained from linearization of both the governing 
equations (11-14) and the boundary condition (15). The non-linear terms present 
in the constitutive and momentum equations are neglected, and the linearized stress 
condition is applied at the unperturbed jet surface. All unknowns are sought in the 
complex form f( r)e”’ + a[, where k is the wave number of the perturbation (k = n/L), 
and ~1 is the exponential growth rate. Application of the boundary conditions leads, 
after long developments, to a characteristic equation relating c( to k. Middleman did 
not present the LSA results in their complete form, but rather he discussed an 
approximate formulation of the characteristic equation amenable to an analytical 
treatment. In the present paper, we use the exact formulation of the LSA results 
corresponding to a given wave number and the initial perturbation (46). 

The characteristic equation is given by 

2p*k2 
Cc’+---- 

2kk’Z,(kh,)~~(k’h,) 

p~oikho) 
r; (kho) - (k” + k2)~,(k’j7,) _ a 1 

yk( 1 - k’h;)l,(kh,)(k” -k’) 
= 

ph,+(k” + k2)Zo(kho) ’ 

where 

Here, the symbol l,Z denotes the modified Bessel function of the &h order. In the 
particular case of a Newtonian fluid, p* is equal to ,/J. We solve (Al) for the growth 
rate by means of a fixed point scheme, using the approximate result given by Mid- 
dleman as a first guess. The characteristic equation (Al ) has two solutions when the 
density is non-zero, which indicates that one can scale independently the initial per- 
turbation of the jet radius and the initial flow field; we select here the solution 
corresponding to the highest growth rate. 
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The LSA solution then reads 

h(z, r) = /I,[ 1 + E cos kz eU’], 

u,(r, .z3 tj = k[aZ,(kr) + bZ,(k’r)] cos kr e”‘: 

T;‘(r, z, t) = 2ck[akl;(kr) + bk’l;(k’r)] cos kr err. 

T-;'(r, z. t) = 2ck cot kz u,(r, -5, t 1, 

TT”( r, 2, tj = 2cc,(r, 3, r)/r, 

T;=(r, 2, t)= -ck’ 2aZ,(kr)+bZ,(,k’rj 
W2+k2) 

12 tt I sin kz e”, (Artj 

where E is the small parameter used in (46), and a, h and c are constants given by 

bZ,(k’h,)(k’” + k’j a=- 
2k’z,( kh, j ’ 

h= 
ELI 

kZ,(k’h,)[1-((k’*fk’ji’2k’)]’ 

The expressions (A3 j written for time t = 0 provide the initial conditions used in the 
present paper. We note that only the initial velocity field is needed for a Newtonian 
fluid. The limiting case of a vanishing density is obtained by formal expansion of 
(Al j-(A4) around p = 0. 

The nature of the LSA fiow field is made more apparent by assuming that kr and 
k’r are small and using classical asymptotic results for the Bessel functions; we find 
that c, - r cos kz e’* and u, - sin h-z e”‘, which corresponds to a uniaxial stretching 
flow with a non-constant elongational rate. 
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